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Abstract

Brain is very important part of our body. Brain is a remote control of our day-to-day activity. If
any problem occurs in brain, then immediate reaction we can see in our activity. The disease which
disorders the brain where it causes uncontrollable or unintended movements of our body such as
balancing the body or co-ordination of the activity, stiffness or shaking the body. These are the
symbols of the disease name Parkinson’s.

Keywords: Parkinson’s disease (PD), Machine Learning, Support Vector Machine, Feature
Selection.

Introduction

Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects millions of people
worldwide. The disease is characterized by a gradual loss of dopamine-producing neurons in the
brain, leading to motor symptoms such as tremors, stiffness, and difficulty with balance and
coordination. Although there is no cure for PD, early diagnosis and treatment can significantly
improve the quality of life for patients. Machine learning (ML) has shown promise in predicting
PD by analysing large datasets of clinical and biological information. ML models can identify
patterns and relationships within data that may not be visible to human analysts, and can be used
to predict the likelihood of disease onset or progression based on patient characteristics. In recent
years, several studies have investigated the use of ML for PD prediction, using various types of
data such as medical records, imaging studies, and genetic information. These studies have shown
that ML can accurately predict PD, potentially allowing for earlier diagnosis and treatment.

Objective

Machine learning predictive models will help to classify the people who are healthy and people
who are suffering from Parkinson’s Disease through ML based methods/algorithms. Different Al-
based techniques for the classification are reasonable for being a good support for the expert. The
Machine Learning Classification technique will help to improve the accuracy & result of the model
and also the dependability of diagnosis and reduce possible loopholes, hence making the PD
classification more time-

Problem Statement

The main aim is to predict the prediction efficiency that would be beneficial for the patients who
are suffering from Parkinson and the percentage of the disease will be reduced. Generally, in the
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first stage, Parkinson's can be cured by the proper treatment. So it‘s important to identify the PD
at the early stage for the betterment of the patients. The main purpose of this research work is to
find the best prediction model i.e. the best machine learning technique which will distinguish the
Parkinson’s patient from the healthy person. The techniques used in this problem are SVM. The
experimental study is performed on the voice dataset of Parkinson’s patients which is downloaded
from the Kaggle. The prediction is evaluated using evaluation metrics like confusion matrix,
precision, recall. The machine learning model we have created is around 75% to 80% accurate.
The disease for which there are no diagnostics methods machine learning models are able to predict
whether the person has Parkinson’s disease or not. This is the power of machine learning by using
which many of the real-world problems are being solved.

Technical Terminology

Support Vector Machines

Support Vector Machines (SVM) is a powerful machine learning algorithm used for both
classification and regression tasks. It works by finding an optimal hyperplane that separates
different classes or predicts continuous values. SVM aims to maximize the margin, which is the
distance between the hyperplane and the closest data points from each class. This approach allows
SVM to generalize well and handle complex decision boundaries.

In this particular case we use Linear SVM, Linear SVM (Support Vector Machine) is a variant of
the SVM algorithm that uses a linear decision boundary to separate different classes in the input
data. In linear SVM, the goal is to find the best hyperplane that maximally separates the classes
while maintaining a maximum margin between the decision boundary and the closest data points
from each class.

The decision boundary in linear SVM is a linear combination of the input features, represented by
a linear equation of the form:

wT*x+b=0

where w is the weight vector, x is the input feature vector, and b is the bias term.
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The linear SVM algorithm aims to find the optimal values of the weight vector w and the bias term
b by solving an optimization problem. The objective is to minimize the classification error while
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maximizing the margin between the decision boundary and the support vectors, which are the data
points closest to the decision boundary.

Linear SVM is particularly effective when the input data is linearly separable, meaning that there
exists a hyperplane that can perfectly separate the classes. In our case, the goal is to separate the
two hand positions “Open” and “Close” respectively using the Image inputs.

Program

Libraries Used

NumPy : is a Python library used for working with arrays.It also has functions for working in
domain of linear algebra, fourier transform, and matrices.

Pandas : Pandas is an open-source Python library that consists of multiple modules for high-
performance, easy-to-use data structures, and data analysis tools

Sklearn Model : Sklearn(or Sci kit-learn). It is a Python library that offers various features for
data processing that can be used for classification, clustering, and model selection.train_test split
:train_test_split is a function in Sklearn model selection for splitting data arrays into two subsets:
for training data and for testing data. Sklearn train test split will make random partitions for the
two subsets.

*X, Y the first parameter is the data set you're selecting to use.

strain_size : This parameter sets the size of the training data set.

*The ideal split is said to be 80:20for training and testing. You may need to adjust it depending on
the size of the data set and parameter complexity.

sklearn.metrics: The metrics module from the sci kit-learn library, which provides various
evaluation metrics for machine learning models.

Working Of Program:

Training of the SVM
Parkinson’s Data pre processing Train Test split
Data
.
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Data Preprocessing: The first step in developing a PD prediction model using ML is to preprocess
the data. This typically involves cleaning the data, filling in missing values, and converting
categorical variables into numerical variables. Data cleaning may involve removing outliers,
correcting data entry errors, and dealing with inconsistencies in the data. Missing values can be
filled in using techniques such as mean imputation, median imputation, or mode imputation.
Categorical variables can be converted into numerical variables using techniques such as one-hot
encoding or label encoding.

Feature Selection: The next step is to select the most relevant features for PD prediction. This can
be done using various techniques such as correlation analysis, principal component analysis
(PCA), or feature importance analysis. Correlation analysis involves identifying the features that
are most strongly correlated with the target variable (PD). PCA involves reducing the
dimensionality of the data by identifying the principal components that explain the most variance
in the data. Feature importance analysis involves using ML models such as random forests or
gradient boosting machines to identify the most important features for prediction.

Model Training: Once the relevant features have been identified, the next step is to train the ML
model. This involves splitting the data into training and testing sets, fitting the model to the training
data, and tuning the model hyper parameters. ML models that can be used for PD prediction
include logistic regression, decision trees, random forests, support vector machines (SVMs), and
neural networks.

.
Working Model
v e e e W .

Importing the Dependencies
[ 1 from google.colab import drive

2 drive.mount(’/content/drive’)

Mounted at /content/drive

] 1 import numpy as np

2 import pandas as pd

3 from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler
from sklearn import svm

6 from sklearn.metrics import accuracy_score
Data Collection & Analysis
[] 1 # loading the data from csv file to a Pandas DataFrame

2 parkinsons_data = pd.read_csv('/content/parkinsons.data’)
[] 1 #printing the first 5 rows of the dataframe

2 parkinsons_data.head()

name MDVP:Fo(Hz) MOVP:Fhi(Hz) MOVP:Flo(Hz) MDVP:Jitter(X) MOVP:Jitter(Abs) MDVP:RAP MOVP:PPQ Jitter:DDP MOVP:Shimmer ... Shimmer:DDA NHR HNR status

0 phon_R01_S01_1 119.992 157.302 74.997 0.00784 0.00007 0.00370  0.00554 0.01109 0.04374 ... 0.06545 0.02211 21.033 180,
1 phon_R01_S01_2 122.400 148.650 113.819 0.00968 0.00008  0.00465  0.00696 0.013%4 0.06134 .. 0.09403 0.01929 19.085 10
2 phon_R01_S01_3 116.682 131111 111.555 0.01050 0.00009  0.00544  0.00781 0.01633 005233 .. 0.08270 0.01309 20.651 10
3 phon_R01_S01_4 116.676 137.871 111.366 0.00997 0.00009 0.00502 0.00698 0.01505 0.05492 .. 0.08771 0.01353 20.644 10
4 phon_R01_S01_5 116.014 141.781 110.655 0.01284 0.00011  0.00655  0.00908 0.01966 0.06425 ... 0.10470 0.01767 19.649 10

5 rows x 24 columns

1  # number of rows and columns in the dataframe
2 parkinsons_data.shape

(195, 24)

1 # getting more information about the dataset
2 parkinsons_data.info()
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<class ‘pandas.core.frame.DataFrame'>
RangeIndex: 195 entries, © to 194
Data columns (total 24 columns):

# Column Non-Null Count Dtype
name 195 non-null object
MOVP:Fo(HZ) 195 non-null float6a
MOVP:Fhi(Hz) 195 non-null float6a
MOVP:Flo(Hz) 195 non-null float64
MOVP:Jitter(%) 195 non-null floaté64

:Jitter(Abs) 195 non-null float64

HIBOBONOVNDBWN RO
3

MOVP:RAP 195 non-null floates
MOVP:PPQ 195 non-null floatéa
Jitter:DOP 195 non-null float6a
195 non-null floatea
L] 195 nor 11 floatea
- | 1APQ3 195 non-null float64
12 Shimmer:APQS 195 non-null float64
13 MOVP:APQ 195 non-null float64
14 Shimmer:DDA 195 non-null float6a
15 NHR 195 non-null float6s
16 HNR 195 non-null floatea
17 status 195 non-null int6a
18 RPDE 195 non-null float6a
19 DFA 195 non-null float6a
20 spreadl 195 non-null floatea
21 spread2 195 non-null floatéea
22 D2 195 non-null floates
23 PPE 195 non-null floatéa

dtypes: float64(22), int64(1), object(1)
memory usage: 36.7+ KB

1 # checking for missing values in each column
2 parkinsons_data.isnull().sum()

MOVP:Fo(Hz)
MOVP:Fhi (Hz)
MOVP:Flo(Hz)
MOVP:ditter(X)
MOVP:Jitter(Abs)
MOVP :RAP
MDVP:PPQ
Jitter:D0P
MOVP:Shimmer
MOVP:Shimmer(dB)
Shimmer:APQ3
Shimmer:APQS
MOVP:APQ
Shimmer:DDA
NHR

HNR

status

RPDE

DFA

spreadl
spread2

02

PPE

dtype: int64

COOO0OOOOO00000O0OCOOCOOOO®

1 # getting some statistical measures about the data
2 parkinsons_data.describe()

MOVP:Fo(Hz) MOVP:Fhi(Hz) MOVP:Flo(Hz) MOVP:Jitter(%) MOVP:Jitter(Abs) MOVP:RAP  MDVP:PPQ Jitter:DDP MOVP:Shimmer MOVP:Shimmer(dB) ... Shimmer:DDA NHR
count  195.000000 195.000000 195.000000 195.000000 195.000000 195.000000 195.000000 195.000000 195.000000 195.000000 .. 195.000000 195.000000 195.000
mean  154.228641 197.104918 116.324631 0.006220 0.000044 0.003306 0.003446 0.009920 0.029709 0.282251 .. 0.046993 0.024847 21.885
std 41.390065 91.491548 43.521413 0.004848 0.000035 0.002968 0.002759 0.008903 0.018857 0.194877 ... 0.030459 0.040418 4.425
min 88.333000 102.145000 65.476000 0.001680 0.000007  0.000680  0.000920  0.002040 0.009540 0.085000 ... 0.013640  0.000650  8.441
25%  117.572000 134.862500 84.291000 0.003460 0.000020  0.001660  0.001860  0.004985 0.016505 0.148500 ... 0.024735  0.005925 19.198
50%  148.790000 175.829000 104.315000 0.004840 0.000030  0.002500  0.002690  0.007490 0.022970 0.221000 ... 0.038360  0.011660 22.085
75% 182769000  224.205500 140.018500 0.007365 0.000060  0.003835  0.003955 0.011505 0.037885 0.350000 ... 0.060795  0.025640 25.075
max 260.105000 592.030000 239.170000 0.033160 0.000260 0.021440 0.019580 0.064330 0.119080 1.302000 ... 0.169420 0.314820 33.047

8 rows x 23 columns
<« »

1 # distribution of target variable

2 parkinsons_data[ "status'].value_counts()

1 # grouping the data bas3ed on the target variable

2 parkinsons_data.groupby('status').mean()

<ipython-input-10-fe279e55666c>:2: FutureWarning: The default value of numeric_only in DataFrameGroupBy.mean is deprecated. In a future version, numeric_only will default to False. Eit
parkinsons_data.groupby('status’).mean()

MOVP:Fo(Hz) MOVP:Fhi(Hz) MDVP:Flo(Hz) MOVP:Jitter(X) MOVP:Jitter(Abs) MOVP:RAP MOVP:PPQ Jitter:DDP MOVP:Shimmer MOVP:Shimmer(d8) ... MDVP:APQ Shimmer:DDA NHR
status
0 181.937771 223.636750 145.207292 0.003866 0.000023 0.001925 0.002056  0.005776 0.017615 0.162958 .. 0.013305 0.028511 0.011483 2
1 145.180762 188.441463 106.893558 0.006989 0.000051 0.003757 0.003900 0.011273 0.033658 0321204 .. 0.027600 0.053027 0.029211 2

2 rows x 22 columns
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19 ©0.00003  ©0.00263  0.00259 0.00790 ©0.04087
191 0.00003 0.00331  0.00292 0.00994 0.02751
192 ©0.00008 ©0.00624  0.00564 0.01873 ©0.02308
193 0.00004  0.00370  0.00390 0.01109 0.02296
192 0.00003  0.00295 0.00317 ©0.00885 0.01884

1oV : shimmer (d8) MOVP:APQ  Shimmer:DDA WR MR RPDE \

° 0.426 0.02971 0.06545 ©0.02211 21.033 0.414783

: 0.626 ©0.04368 ©0.09403 0.01929 19.085 0.458359

2 0.482 ... 0.0359% 0.08270 0.01309 20.651 0.429895

3 0.517 ... 0.03772 ©0.08771 ©.01353 20.644 0.434969

a 0.584 ... 0.04465 0.10470 ©0.01767 19.649 0.417356

190 0.405 0.02745 0.07008 0.02764 19.517 0.448439

191 0.263 0.01879 0.04812 0.01810 19.147 0.431674

192 0.256 0.01667 ©0.03804 0.10715 17.883 0.407567

193 0.241 ... 0.01588 0.03794 0.07223 19.020 0.451221

194 0.190 ... 0.01373 0.03078 ©0.04398 21.200 0.462803
DFA  spreadl spread2 D2 PPE

° ©.815285 -4.813031 0.266482 2.301442 0.284654

1 0.819521 -4.075192 0.335590 2.486855 0.368674

2 ©0.825288 -4.443179 0.311173 2.342259 0.332634

3 0.819235 -4.117501 0.334147 2.405554 0.368975

4 0.823484 -3.747787 0.234513 2.332180 ©.410335

190 0.657899 -6.538586 ©0.121952 2.657476 0.133050
191 0.683244 -6.195325 ©.129303 2.784312 ©.168895
192 0.655683 -6.787197 ©0.158453 2.679772 0.131728
193 0.643956 -6.744577 ©.207454 2.138608 ©.123306
194 0.664357 -5.724056 ©0.190667 2.555477 0.148569

(195 rows x 22 coluans]

O @ print(v)

1
1
1
1
1
90 o
11 0
192 @
193 @
194 @
Name: status, Length: 195, dtype: int6a
+ Code + Text
Splitting the data to training data & Test data
[] 1 Xtrain, X_test, Y_train, ¥_test = train_test_split(X, v, test_size=0.2, random_state=2)

[] 1 print(X.shape, X_train.shape, X_test.shape)
(195, 22) (156, 22) (39, 22)
Data Standardization
[ ] 1 scaler = standardScaler()

[] 1 scaler.fit(x_train)
« standardscaler

standardscaler()

[] 1 X_train = scaler.transform(X_train)
2

3 X_test = scaler.transform(X_test)

© 1 orint(x_train)

O ([ 0.63239631 -0.02731081 -0.87985049 ... -0.97586547 -0.55160318
0.07769494
(-1.05512719 -0.83337041 -0.9284778 ... 0.3981808 -0.61014073
0.39291782]
[ 0.02996187 -0.29531068 -1.12211107 ... -0.43937044 -0.62849605
-0.50948408)
[-0.9096785 -0.6637302 -0.160638 ... 1.22001022 -0.47404629
-0.2159482
[-0.35977689 0.19731822 -0.79063679 ... -0.17896029 -0.47272835
©0.28181221]
[ 1.01957066 0.19922317 -0.61914972 ... -0.716232  1.23632066

-0.05829386] ]

1 # accuracy score on training data
X_test_prediction = model.predict(X_test)
test_data_accuracy = accuracy_score(Y_test, X_test_prediction)

1 print(‘Accuracy score of test data : ', test_data_accuracy)

Accuracy score of test data : 0.8717948717948718

ling a Predictive System

1 input_data = (197.07600,206.89600,192.05500,0.00289,0.00001,0.00166,0.00168,0.00498,0.01098,0.09700,0.00563,0.00650,0.00802,0.01689,0. 00339, 26.77500,0.422229,0. 741367, -7. 348300,

3 # changing input data to a numpy array
4 input_data_as_numpy_array = np.asarray(input_data)

6 # reshape the numpy array
7 input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)

9 @ standardize the data
10 std_data = scaler.transform(input_data_reshaped)

12 prediction = model.predict(std_data)
13 print(prediction)

16 if (prediction[0] == ©

17 | print("The person does not have Parkinsons Disease”)
18

19 else:

20 print("The Person has Parkinsons”)
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Results

Here in this project, we are going to collect the patient details from datasets. These details will be
of various forms of parameters such as age, height, weight, walking gait, etc. Speech dataset: The
Multi-Dimensional Voice Program (MDVP) is a well-established software program used for
quantitative acoustic signal assessment of voice quality. The MDVP calculates a number of
acoustic parameters including shimmer, short-term perturbations of the amplitude, and jitter, short-
term perturbations of the frequency. Here we have used data of 195 patients. MDVP: The Multi-
Dimensional Voice Program (MDVP) is a computer program that can calculate as many as 33
acoustic parameters from a voice sample. It is standard software for acoustic assessment which is
widely used by many researchers in the voice field for being very comprehensive. The MDVP
appears to have potential for rapid quantitative assessments of voice in both research and clinical
applications it diagnosis of pediatric vocal cord dysfunction. Dysphonia is a phonation disorder
with the difficulty in the voice production. Dysphonia can be observed with hoarse, harsh, or
breathy vowel sounds, as a result of impaired ability of the vocal folds to properly vibrate during
exhalation. Here we have used data of 77 patients. These datasets will have all patients' details
according to our need. We need to mine the data from the set of given data. Here the concept of
machine learning is been used. Here the input data are being pre-processed according to our need,
Parkinson's affected people are been tabulated and using machine learning algorithm we are
predicting how patients are being affected. The below graph Fig 2 is the graph that represents the
accuracy rate using different algorithms and speech datasets for detection of Parkinson's disease.
Fig 3 shows the accuracy rate using different algorithms and tremor datasets for detection of
Parkinson’s disease.

Conclusion

Parkinson’s disease affects the CNS of the brain and has yet no treatment unless it’s detected early.
Late detection leads to no treatment and loss of life. Thus, its early detection is significant. For
early detection of the disease, we utilized machine learning algorithms such as SVM and Random
Forest. We checked our Parkinson disease data and find out SVM is the best Algorithm to predict
the onset of the disease which will enable early treatment and save a life. In this process we can
predict the Parkinson’s disease in patient’s body using machine learning technology and this
method makes the process easy to our user. Our analysis provides very accurate performance in
detecting Parkinson's disease using SVM algorithm.
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