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ABSTRACT

This paper proposes the compact protocol for developing cyber security system in context to
security and efficiency. The security is achieved through the category morphism over the fuzzy
graph. The fuzzy graph coloring is studied in discrete membership function. The permutation based
fuzzy graph-categroy morphism based matrix generates the computational chaos, which creates
the computational complexity for the attackers, thus its application comprises with the cyber
security systems. The chaotic complexity is performed in one way and this characteristic applies
to set the digital security system but another way is fast by Takugi-Sugino output function, this
provides the efficiency advantage. This compact category morphism-Takugi-Sugino output
phenomenon constructs the secure network protocol for developing cyber security system.
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1. Introduction: In 1965, Zadeh [1] introduced the new thought on the collection of objects
through the membership approach. This new idea on set theory is referred as the fuzzy set. Fuzzy
set is based on the grading or the classification of objects. Thus, the set is classified in two types
majorly, crisp set and fuzzy set. Later this theory became very popular by its significant application
in real world problems, viz. automatic washing machine, automatic camera, robotics, surgery,
transport, space, industrial machinery etc. In modern research, fuzzy is associated with artificial
intelligence, machine learning and automation which left huge impact on scientific and
technological societies.

Zadeh [1,4] introduced the discrete thought of fuzzy based on classification of objects through the
membership function. This is discrete than the conventional set which is based on just a collection
of well defined objects. This is not just a collection of objects but classification of objects through
the membership function. Thus, Zadeh gave the new name of this set, fuzzy set. Later, it is
generalized into fuzzy logic, fuzzy rule, fuzzy coloring etc. This becomes so popular by its
application in real world problems. There exist several applications [2-9], e.g. information theory,
automation, diagnosis, artificial intelligence, business and industries, medicine and surgery etc.




ON CATEGORY MORPHISM-TAKUGI-SUGINO OUTPUT FUNCTION BASED COMPACT CYBER SECURITY PROTOCOL

Gehrke et al. [10] studied the fuzzy set by piecewise interval decomposition approach. The
constant membership function is generalized for obtaining the piecewise membership function.
Greenfield et al. [15] extended the preceding result with fuzzy logic in 2016. This is an extension
for complex valued function with discrete fuzzy rules. In 2021, Nasir et al. developed a mechanism
for curing the disease. This mechanism is based on fuzzy relation and complex fuzzy logic rules.
This work is inspired by Chen et al. [17] whose complex fuzzy set and its neurofuzzy architecture.
Li [27] developed a data analysis model based on intuitionistic fuzzy sets. This was a discrete
approach to redefine fuzzy set. Although, in 2001, De et al. [28] applied the intuitionistic fuzzy set
for diagnosis the critical disease. The intuitionistic fuzzy set also used in [29-30] for obtaining the
optimum solution.

In 1976, the concept of public key cryptography appeared. Basically this was a key agreement
protocol as the application of number theoretic hard problem. The discrete logarithm problem
[DLP] based key exchange protocol was introduced by Diffie et al. [31]. In 1985, first real and
practical system is developed based on the preceding key agreement protocol. This is an equivalent
secure and efficient as RSA, elliptic curve etc [33-36]. Efficiency and security both are key
parameters for any security system, ElGamal and RSA both are credited as the real systems but
efficiency is not as much as expected. Thus, elliptic curve based system exists for both the
challenges. Some examples are [37, 39-45]. There are some discrete security systems based on the
corresponding discrete approach, i.e. XTR, Hyper elliptic, Non-Abelian etc. [45-50]. In modern
world, there are various new ideas are appearing frequently, e.g. cryptocurrency, digital signature,
compact artificial intelligence, transporting models, space crafts, etc.

2. Preliminaries: In this section, fuzzy set and its application is presented.
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2.1.Fuzzy Set: Let, the space be X, the generic element of X = x, A fuzzy set (class) =
A; A € X.Then, its characterization is defined by a membership function = f,(x), Such
that, x€[0,1], the membership; x € 4. Hence, f,(x)=1, the higher grade of the
membership: x € A4, as the conventional set theory term, 4 = {0,1}, over

fix)=1x e 4,

or,

fix)=x¢ A.
Next, the fuzzy set is explained with an example.
2.2. Example of Fuzzy Set: Let, the real number be X, the fuzzy set of real numbers

which are much greater than 5, Then, f,(x) € R, Its functional value might be;

S4(0)=0;

fA (5)=0;

£,(9)=0.01;
£,(106) = 0.3;

£,(999) = 0.89;
£,(10000) =1.

Next, the definition of graph is presented. The concept of graph is introduced by Euler in
1735.

2.3. Graph: If G(V,E);V = {yl,...,v,, },E = {gl,...,e,, }, where V is the set of vertices and E
is the set of edges, then G(V,F)is said to be a graph. This can also be noted by crisp
graph.

Next, graph coloring is defined through k-coloring of crisp graph.
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2.4. k-Coloring of Crisp Graph: Let the map be f. If f is defined from V to the set of k-
elements {l 2 k} such that f(u)# f(v).u,v € E, then it is called k-coloring of graph

G(V ,E).
Next, the concept of fuzzy graph is explained. Kaufmann introduced the fuzzy graph

G(V.E). - -

2.5. Fuzzy Graph: Let be a fuzzy graph, where V is the vertex set and  is the
G(V.E). E

fuzzy edge set characterized by the matrix

W= (), o s () = po(uv)iu,v eVou #v,u—Vxy —1 is the membership
function.
The concept and application of fuzzy graph coloring are presented through a monotone

family of sets defined by chromatic number of G..
2.3. Fuzzy Graph Coloring (FGC): If is a fuzzy graph, where 7V = {12 nfand

G(V.E)

is a fuzzy number on the set of all the subsets of ¥ xV. Assume I = AU {0,1}, where
A={o, <..<0, }is the fundamental set of G.For each o, € 1.G, denotes the crisp
graph G, (LE, ):E, = {(u.v):n(u.v)2a,} and X, =G((,) denotes the chromatic
number of crisp graph G(y ).
This can be extended for variants of fuzzy graph coloring. The next definition is an
important approach of modern algebra, i.e. category.
2.4. Category: A category C consists of a class of objects and sets of morphisms between
those objects. Next, some results on FGC are presented.

3. Results on FGC: The following theorems will be applied to develop the cyber

security protocol.

3.1. Theorem: Let be a fuzzy graph, where V' =4yv_...v t.and E ={e__e ! the
G(V.E) 1 » 1 o»

membership function of E be

[- 0 . TRV

I 0 - 0

u=l. o - 0
: o - 0 |
. ne.v,) 0 -
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and

the complement of p(v,.v;):i,j = 1.2,...,nis defined by :l(\’,,\‘_i) =1-u(v;,v;)represented

by matrix
e T (R
| |
= 1 |
i =: « 1 = 1 : I
I . 1 - 1 !
Lo - neay) 1 - ]
Then, there exists a category C.
Proof: By definition of category,
For every (L, @, there exists a set
Hom, (1, 1)

Which is morphisms from p — ; or

i— 0 : : u(vhv,)ll -1 . TR
1
|10 - 0 : | 11 - 1 ' T
I 0 - o0 i —"l R o
.0 - 0 | |. . - !
Il_. s }J. y VM) 0 = J '. . . ;(Lﬂvm) l — J
Consider, a membership function [T € G and its matrix representation will be
- o0 . TR
- 0 . . \
u ={ 1 = 0 |'
|« - 1 = 0 |
||_ # g‘,n’vmg 1 - IJ

Then, the composition of morphisms is defined by

Home(p, ;) x Hom (H, {{) = Hom . (1, [T) over the morphisms
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lf— 1 , , ﬁ(,,ﬁ,,’l)-lI l_— 0 : : lgw",v“)]

i 1 . L. 0 . i

i - = L. :—’i 1 - o - i

’ . 1 - | A I I 1 - g

L- PO V) 1 - J ||_. COE,Y,,) L = |_|
There exist the 3 fuzzy graphs, ~ ~ ~ o

T\ Ll )T TV (L) T\ L)

Its matrix representation will be

|I-_ 0 . . P("i—agrl_l
~ ~ 0 - 0 . . |
Gu(LE)=||. 0 - o . i,
[ - - 0 = 0 |
. . ne,.e,) 0 -
I-— 0 ) . H("l,@:
T A 0 |
G;(LE)=||. 0 _ 0 I|
| 0 - 0o |
L e .ewn) 0 - J'
- o . . en)!
- |° - 0 . |
Ga(LE)=|I- o - o0 }
~. . 0 - 0 I
L- - gvn’ez;;ez,) 0 - ]

The composition of morphisms is defined by

~ o~ ~ o~ ~ ~ ~ o~ ~

Home (G, (V.E).G;(V.E),) x Home (G(V.E).Gy (V..E).) > Home (G, (V. E).Gy (V.E).).
Hence, there exists the category C defined over the fuzzy graphs.

This completes the proof.

Next theorem is based on

Next theorem is based on the application of cosine amplitude method. There are the two

finite sets, vertices and edges. These finite sets constitute the fuzzy graph as the function
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definedby = with the membership function
G(V.E)
[- o . TR
0. o .
n=l. o - 0 |
. o - o |
[FTCAR NS B |

Its discrete representation sets the concept of cosine amplitude. Basically, this method
comprises with data samples. Further, these data samples will be applied to develop a
security system. These data samples form the data array X,

X = {xp.x, }.
Each element is referred as the vector of length m,

1= {5 o )
This implies a statement, if there is the data sample then there will be the m-dimensional
space. It means there is the one to one correspondence as vector to m-coordinate. Then,

there exists a relation I';s compares with the pair of vectors (x,,x ; ), defined by,

73— (X, x ;), the membership function under the state of relation R is p, (x;, ¥ ;) and the
corresponding relation matrix will be of order n. Further, the computational method of

will be discussed. This approach comprises with fuzzy system theory and rule reduction.

Next theorem is based on the formulation for computing r;,.

J.Z. 1uruULITIL. LCL UT a 1usZsy glapl, WUCICT ¥ — ) YeweV (. QUU L — ) Gt ( WC

QV,E) 1 n 1 n

membership function of Ebe

[- 0 nvy,v,)1
o - o . |
u=l. o - 0 |
N
.. neeve) 0 -]

the relation be,
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And the membership function be,

|( [ x; 114 | II
I H 1" I
I | |
w Ll !
2 | [l
[ | |
l [ X | X,
N = I. Jea )
Then, the computation of 7, is defined by
[ (x )

Proof: Let the finite set of k-tuple objects be X = {x,.....x, }. The corresponding set of
rules for every element of X is R = {5&,4 } Then there exists an Intersection Rule

Configuration (IRC). IRC is a computational tool for computing the rule based
independent values with significant computational time and security. This is represented
by the following exponential relation with n number of input values,
R=p2
Or, R=1,7...
This is classified discretely for computing every element with the membership function
through the Single Value Decomposition (SVD) method. SVD is based on linear algebra
and coordinate transformation. Thus the set of unique transformation exists. This
generates the distinct coordinate system. There will be the Takugi-Suging output function

for the inputs represented by
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R n
Z'H“;‘
Z =Gz )=t

2I1m,

=1 j=1

So, the fuzzy graph generalization of the element x into - through Z is computed
. GV.E)
by,
201w, (), %)
7 Bl jA =u |+..+u| b |
e e | v [ 1
STie, o U
=1 j=1
.This Z establishes the set of rules as follows:
Rule: If 4(x;)and B(x,) then Z. L
This generalizes for the finite set X and the fuzzy graph as follows:
G(V.E)
r((f‘in 2 X5, Ty )‘“G(“fg, X, Jn)) ][
(=(VE)(ttr)u(trr)-| |
¢ e LI ¥ | |
||_ ((xi»,xm,r,,,),ue(xh,xm,rm ))|J

Then, the corresponding relation over fuzzy graph is,

X
I—(( b > % ! )‘!’IR (xlll X ‘rll))

1
|
®rex oy )obe (e oy )-l i
I
|L ((-‘g,,’xm’rm)#x (x&,xm ’rm))l_l
The Takugi-Sugino output function is,

l—(( X ”11)“2 (qu’ Xin "11))
(Z(ﬁ I’r )le(;‘;,‘(,,r )_l
l
||_ ((xh,xm,rm),pz(xfn,xm,rm)
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Hence, the computational matrix of 7, is,

NEA

|ll|._.”_

|

j |
.

p— I

i

[x )

..I_z.,ll|I

L (Y /]

This completes the proof.
Next, the digital security system is presented based on the above results. The security of

this system interacts with the computational difficulty ofr,. There is the compact key

7.
e
based on the fuzzy graph, fuzzy graph coloring and the category morphism. Hence its

permutation forms the unique structure for developing the digital security system. This

protocol becomes the foundation to propose the discrete and distinct cyber security
systems.

4. The Protocol for Developing Cyber Security System:
4.1. Input:

G(V.E), 1, 1L.C. 7,

4.2. Permutation:

4.2.1. Home (u, II) x Hom,- (ﬁ, ) = Hom (1, [0).

4.2.ép(V,E),GE(V.E), Gy(V,.E).
4.2.3.Hom.(G,(V,E), GP—(V,E), )x Hom, (Gp—(V,E), Gy (V.E),) > Hom:(G,(V.E),G,(V,E),).
4.3. Network:

n

2alln, (x ) (x )
43.1. Z= = 3 VU O T LI S|
)

Y 1

IR Y

=1 j=1

Tec Empresarial | Costa Rica,v. 18 | n. 2 | p. 1642-1655 | 2023

1651




ON CATEGORY MORPHISM-TAKUGI-SUGINO OUTPUT FUNCTION BASED COMPACT CYBER SECURITY PROTOCOL

[ (x ) ]
| hi) |
xl‘)
- |
432 rﬁ=i |
| [x )
} ol 1]

4.4. Output: The Takugi-Sugino function:

[((xm X T ) Hz (‘Tm X "'11)) _}
|
|

|

(Z("étixi’rii )f“z(-%ax,,’} )=|| |
|
lL ((xsm""m ,r,,,),}lz(x&,xm ”‘m))lj

5. Conclusion: There are two key parameters for testing any cyber security protocol,
security and efficiency. Sometimes, the system satisfies the probable security protocol but
its computational complexity takes more time by the applied hard mathematical
representation. Thus the system is referred secure but inefficient. The proposed cyber
security protocol fulfills both the standards, security and efficiency. The category
morphism mechanism transforms the chaotic fuzzy graph coloring into feasible finite
matrix. This provides the probable security advantage. The Takugi-Suging output
function sets the faster operation over the fuzzy graph. Hence, this dual approach

develops a secure network protocol and respective applications.
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