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Abstract: Object detection and classification in the data collected from the sensor networks is 
challenging task. This paper presents novel mechanisms Quantum Fourier Transform (QFT) and 
Quantum Discrete Transform (QDT) which can be utilized for object detection and classification 
using sensor data. The quantum Fourier transform with its mathematical modelling and example 
is described in this paper. The QFT is utilized to propose quantum Fourier transform sampler 
algorithm. The mathematical elaboration with example is elaborated. An overview of proposed 
quantum discrete transform with proposed quantum discrete transform algorithm, and proposed 
designed quantum circuit for quantum discrete transform are described in this paper. The proposed 
quantum Fourier transform sampler algorithm is evaluated using the open source Qiskit platform. 
The evaluation of the algorithm is also extended to the real quantum hardware IBM Quantum by 
utilizing the IBM quantum API. For the evaluation of the proposed approach on the real quantum 
hardware the inverse QFT is utilized.  
Keywords: Object Detection, Quantum Computing, Quantum Transforms, Quantum Fourier 
Transforms, Quantum Discrete Transforms 
 
1 Introduction 
The application of quantum technology for remote sensing has been considered for at least last 20 
years. An active imaging information transmission technology for satellite-borne quantum remote 
sensing is proposed in past, providing solutions and technical basis for realizing active imaging 
technology relying on quantum mechanics principles. Quantum technology is also used in 
interferometric synthetic aperture radars.  A residue connection problem in the phase unwrapping 
procedure as quadratic unconstrained binary optimization problem, can be solved by using the D-
Wave quantum annealer. A quantum annealer application has been explored in past for subset 
feature selection and the classification of hyperspectral images. In this chapter quantum discrete 
transform is proposed and analyzed which can be used for real-time object detection in distinct 
fields. 
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Sensor data has consistently leveraged technological and computational advances helping in 
developing novel techniques to characterize and model the human environment [Rodriguez-
Donaire et al., 2020; Sudmanns et al., 2019]. Given that many remote sensing missions are 
currently operative, carrying on board multispectral, hyperspectral, and radar sensors, and the 
improved capabilities in transmitting and saving a continuously increasing volume of sensor data, 
nowadays estimated in over 150 terabytes per day, the amount of data from sensor applications 
have reached impressive volumes so that they are referred to as Big Data. At the same time, 
advances in computational technologies and analysis methodologies have also progressed to 
accommodate larger and higher resolution datasets. Data classification techniques are constantly 
being improved to keep up with the ever expanding stream of Big Data, and as a consequence, 
artificial intelligence (AI) techniques are becoming increasingly necessary tools. 
Given the need to help expand the processing techniques to deal with these high-resolution Big 
Data, sensor data processing is now looking toward new and innovative computation technologies 
[Riedel et al., 2021]. This is where quantum computing (QC) will play a fundamental role. Today, 
there is a number of differing quantum devices, such as programmable superconducting 
processors, quantum annealers, and photonic quantum computers. However, QC still presents 
some technological limitations, as reported by [Shettell et al., 2021] with a special concern with 
noise and limited error correction. Specific algorithms, namely, the noisy intermediate-scale 
quantum (NISQ) computing algorithms, have been designed to tackle these issues. 
Quantum computers promise to efficiently solve important problems that are intractable on a 
conventional computer. For instance, in quantum systems, due to the exponentially growing 
physical dimensions, finding the eigen values of certain operators is one such intractable problem, 
which can be solved by combining a highly reconfigurable photonic quantum processor with a 
conventional computer. 
Another example is the case of the variational quantum eigensolver (VQE) algorithm used to solve 
combinatorial optimization problems such as finding the ground state energy of a molecule. The 
algorithm finds a bound to the lowest eigenenergy of a given Hamiltonian. This is, in essence, a 
kind of cost function, which is defined by the expectation of the molecular Hamiltonian of a given 
prepared eigenstate. The goal of the VQE is to minimize this cost function by varying the 
parameters θ used to prepare the ansatz eigenstate often representative of a molecule. This hybrid 
algorithm prepares and determines eigenenergies through quantum circuits, and then, it varies the 
parameter classically. By iterating through these classical variations and quantum calculations, a 
hybrid minimization process is established. This approximation of critical minima is analogous to 
the gradient descent. 
In QC, a qubit or quantum bit is the basic unit of quantum information, i.e., the quantum version 
of the classic binary bit. A qubit is one of the simplest quantum systems that display the peculiarity 
of quantum mechanics. Indeed, it is a two-state quantum mechanical system, e.g., an electron in 
two possible levels (spin up and spin down) or a single photon in one of the two possible states 
(vertical and horizontal polarization).While in a classical system, a bit can be in one state or the 
other, qubit exists in a coherent superposition of both states simultaneously, a property that is 
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fundamental to quantum mechanics. Quantum computers utilize the principles of superposition 
and entanglement to streamline computation. For every n qubits, 2n possible states can be 
represented. This is an exponential improvement with respect to the classical systems, which can 
only represent n states for every n bits. Moreover, quantum systems exist in a high-dimensional 
space, known as a Hilbert space, whose inherent properties lend themselves to a complex linear 
optimization. 

A Surrogate Assisted Quantum-behaved Algorithm is presented in [Islam et al., 2022] to obtain a 
better solution for the well placement optimization problem. The proposed approach utilizes 
different meta-heuristic optimization techniques such as the Quantum-inspired Particle Swarm 
Optimization and the Quantum-behaved Bat Algorithm in different implementation phases. 
Previous work demonstrates that quantum-based techniques, such as the quantum bat algorithm 
(QBA) and quantum particle swarm optimization algorithm (QPSO) performed better for well 
placement optimization [Ross, 2019]. A Fourier expression of the quantum radar cross section 
(QRCS) of a dihedral corner reflector is proposed in [Tian et al., 2021], which avoids the problems 
caused by atomic sampling on the target-object surface and is a powerful tool for analyzing the 
scattering characteristics of the reflector. The Radon transform, a classical image-processing tool 
for fast tomography and denoising is extended to the quantum computing platform [Ma et al., 
2022]. A new kind of periodic discrete Radon transform (PDRT), called the quantum periodic 
discrete Radon transform (QPRT), is proposed. 

Quantum machine learning (QML) is an active field of research that seeks to take advantage of the 
capabilities of both quantum computers and machine learning techniques, adapting the latter to the 
strengths of the current state of the art in quantum computing. There are many examples that 
illustrate how quantum computing can be used for anomaly detection [Herr et al., 2021], to train 
models [Abdelgaber and Nikolopoulos, 2020], and possibly enhance machine learning models, 
such as quantum support vector machines (QSVMs) [Havlíˇcek et al., 2019], quantum classifiers 
(QCs) [Yano et al., 2020], and quantum neural networks [Abbas et al., 2021]. Much work has been 
conducted on synthetic and publicly available datasets from various domains, such as drug 
discovery [Batra et al., 2021], image classification [Kerenidis and Luongo, 2020], and 
computational sciences. Comparisons have been made to the classical counterparts of the available 
QML algorithms [Stein et al., 2021]. In addition, when synthetic data are used for machine learning 
experiments, there have been provable advantages shown involving synthetic datasets when there 
is a lack of necessary data [Abufadda and Mansour, 2021]. 

With the vigorous development of emerging sensor technologies the huge volume of data gets 
generated every day. Identification of the intended objects from this huge volume of data is tedious 
task. The comparative analysis of all these reviewed literature is given in table 4.1. 
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2 Quantum Fourier Transform    

The Fourier transform occurs in many different versions throughout classical computing, in areas 
ranging from signal processing to data compression to complexity theory. The quantum Fourier 
transform (QFT) is the quantum implementation of the discrete Fourier transform over the 

amplitudes of a wave function. It is part of many quantum algorithms, most notably Shor’s 
factoring algorithm and quantum phase estimation. The discrete Fourier transform acts on a vector 
(𝑥 , 𝑥 ,........, 𝑥 ) and maps it to the vector (𝑦 , 𝑦 ,........, 𝑦 ) according to the formula 

𝑦 =
1

√𝑁
𝑥 𝜔

jk 

Where, 𝜔jk
= 𝑒

jk

 

Table 1: Comparison of various methods.  

Year 
 

Author’s  Methodology Datasets Purpose   Evaluation 
Strategy 

 

2009 Zhao et al. Data 
transformations 

within the 
horizontal 

3D Sensor 
Data and 
Videos 

Motion 
trajectory of 
each moving 

object 

Computation 
time 

 

2017 Islam et al. Surrogate 
Assisted 

Quantum-
behaved 

Algorithm,  
Quantum-
inspired 

Particle Swarm 

Complex 
Reservoir  

Well 
placement 

optimization 

Average 
standard 

deviation, 
Effectiveness, 

Efficiency 

 

2019 Lv et al. Machine 
learning and  
dedicated-

3D sensors 
data 
and 

Position 
corrections, a 

local map, 

Computation 
time 

 

2022 Sebastianelli 
et al. 

Hybrid 
Quantum 

Neural 

EuroSAT 
dataset 

Remote 
Sensing  
Imagery 

Precision, 
Recall, F1 Score 

2022 Ma et al. Quantum 
periodic 

discrete Radon 

Images  Denoising 
and fast line 

detection 

Computation 
time 

2022 Otsu et al. Spatial-
Importance-

Based 

3D Sensor 
Data,  KITTI 

dataset  

Real-Time 
Object 

Detection 

Computation 
time 
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On the similar ground, the quantum Fourier transform acts on a quantum state |𝑋⟩ = ∑𝑥 |𝑗⟩ and 

maps it to the quantum state |𝑌⟩ = ∑𝑥 |𝑘⟩ according to the formula 

|𝑗⟩ ↦
1

√𝑁
𝜔

jk
|𝑘⟩ 

The QFT is also represented by using the unitary matrix: 

QFT =
1

√𝑁
𝜔

jk
|𝑘⟩ ⟨𝑗| 

The quantum Fourier transform (QFT) transforms between two bases, the computational (Z) basis,  

and the Fourier basis. The H-gate is the single-qubit QFT, and it transforms between the Z-basis 
states |0⟩ and ⟨1| to the X-basis states |+⟩ and ⟨−|. In the same way, all multi-qubit states in the 
computational basis have corresponding states in the Fourier basis. The QFT is simply the function 
that transforms between these bases. 

|StateinComputational
(Time)Basis⟩QFT⃗|StateinFourier

(Frequency)Basis⟩QFT|𝑥⟩ = |𝑥
~
⟩ 

In the computational basis, numbers in binary are stored using the states|0⟩ and ⟨1| as shown in 
figure 1. The frequency with which the different qubits change; the leftmost qubit flips with every 
increment in the number, the next with every 2 increments, the third with every 4 increments, and 
so on. In the Fourier basis, numbers are stored using different rotations around the Z-axis as shown 
in figure 2. 

 

Figure 1: Computational Basis. 

The number to be stored dictates the angle at which each qubit is rotated around the Z-axis. In the 

state |0
~
⟩, all qubits are in the state |+⟩. To encode the state |12

~
⟩on 4 qubits, rotate the leftmost 

qubit by 
12
=

12

16
 full turns (

12

16
× 2𝜋radians). The next qubit is turned double this (

24

16
× 2𝜋radians, 

or 
24

16
 full turns), this angle is then doubled for the qubit after, and so on. The frequency with which 
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each qubit changes. The leftmost qubit (qubit 0) in this case has the lowest frequency, and the 
rightmost the highest. 

 

Figure 2: Fourier Basis. 

The QFT operator as defined above acts on a single qubit state|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩. If 𝑥 = 𝛼, 𝑥 =

𝛽,andN = 2,then 

𝑦 =
1

√2
𝛼𝑒

×

+ 𝛽𝑒
×

=
1

√2
(𝛼 + 𝛽) 

𝑦 =
1

√2
𝛼𝑒

×

+ 𝛽𝑒
×

=
1

√2
(𝛼 − 𝛽) 

QFT |𝜓⟩ =
1

√2
(𝛼 + 𝛽)|0⟩ +

1

√2
(𝛼 − 𝛽)|1⟩ 

This operation is exactly the result of applying the Hadamard operator (HAD) on the qubit: 

HAD =
1

√2

1 1
1 −1

 

If HADoperator is applied to the state|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩, the new state obtained is 

1

√2
(𝛼 + 𝛽)|0⟩ +

1

√2
(𝛼 − 𝛽)|1⟩ = 𝛼

~
|0⟩ + 𝛽

~
|1⟩ 

Hadamard gate performs the discrete Fourier transform for 𝑁 = 2,on the amplitudes of the state. 

 

3 Proposed Quantum Fourier Transform Sampler Algorithm   

A transformation for 𝑁 = 2 ,QFT acting on the state |𝑥⟩ = |𝑥 𝑥 ........𝑥 ⟩ where 𝑥 is the most 

significant bit, is shown below: 
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QFT | ⟩ =
1

√𝑁
𝜔

xy
|𝑦⟩ 

=
1

√𝑁
𝑒

ixy
|𝑦⟩ ,as𝜔xy

= 𝑒
ixy

andN = 2  

Rewriting in fractional binary notation 𝑦 = 𝑦 𝑦 .........𝑦 , = ∑ , 

QFT | ⟩ =
1

√𝑁
𝑒

∑
|𝑦 𝑦 .......𝑦 ⟩ 

After expanding the exponential of a sum to a product of exponentials 

QFT | ⟩ =
1

√𝑁
𝑒

ixy

|𝑦 𝑦 .......𝑦 ⟩ 

After expanding ∑ =∑ ∑ ∑ .............∑ and rearranging sum and products 

QFT | ⟩ =
1

√𝑁
⊗ |0⟩ + 𝑒

ix

|1⟩  

=
1

√𝑁
|0⟩ + 𝑒

ix
|1⟩ ⊗ |0⟩ + 𝑒

ix
|1⟩ ⊗ .......... ⊗ |0⟩ + 𝑒

ix
|1⟩ ⊗ |0⟩ + 𝑒

ix
|1⟩  

The circuit that implements QFT makes use of two gates. The first one is a single-qubit Hadamard 
gate, HADon the single-qubit state |𝑥 ⟩is 

HAD|𝑥 ⟩ =
1

√2
|0⟩ + 𝑒

ix

|1⟩  

The second is a two-qubit controlled rotation 𝐶ROT  given in block-diagonal form as 

𝐶ROT =
𝐼 0
0 𝑈ROT

 

With 

𝑈ROT =
1 0

0 𝑒
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The action of 𝐶ROT on a two-qubit state |𝑥 𝑥 ⟩ where the first qubit is the control and the second 

is the target is given by 

𝐶ROT |0𝑥 ⟩ = |0𝑥 ⟩ 

𝐶ROT |1𝑥 ⟩ = 𝑒
ix

|1𝑥 ⟩ 

Given these two gates, a circuit that implements an n-qubit QFT is shown in figure 3. 

 

Figure 3: Quantum Circuit for n-qubit Quantum Fourier Transform. 

The circuit operates as specified below. Starting with an n-qubit input state |𝑥 𝑥 ........𝑥 ⟩. 

1. After the first Hadamard gate on qubit 1, the state is transformed from the input state to 

HAD |𝑥 𝑥 ........𝑥 ⟩ =
1

√2
|0⟩ + 𝑒( ix )|1⟩ ⊗ |𝑥 𝑥 ........𝑥 ⟩ 

2. After the 𝑈ROT gate on qubit 1 controlled by qubit 2, the state is transformed to 
1

√2
|0⟩ + 𝑒

ix
ix

|1⟩ ⊗ |𝑥 𝑥 ........𝑥 ⟩ 

3. After the application of the last 𝑈ROT gate on qubit 1 controlled by qubit n, the state 

becomes 
1

√2
|0⟩ + 𝑒

ix ix
..............

ix
ix

|1⟩ ⊗ |𝑥 𝑥 ........𝑥 ⟩ 

With  𝑥 = 2 𝑥 + 2 𝑥 + ........ + 2 𝑥 + 2 𝑥 
The state can be modified as 

1

√2
|0⟩ + 𝑒

ix
|1⟩ ⊗ |𝑥 𝑥 ........𝑥 ⟩ 

 
4. After the application of a similar sequence of gates for qubits 2n, we find the final state to 

be 
1

√2
|0⟩ + 𝑒

ix
|1⟩ ⊗

1

√2
|0⟩ + 𝑒

ix
|1⟩ ⊗ ............. ⊗

1

√2
|0⟩ + 𝑒

ix
|1⟩

⊗
1

√2
|0⟩ + 𝑒

ix
|1⟩  
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which is exactly the QFT of the input state as derived with the caveat that the order of the qubits 
is reversed in the output state. 

The 4-qubit QFT circuit |𝑦 𝑦 𝑦 𝑦 ⟩ = QFT |𝑥 𝑥 𝑥 𝑥 ⟩is created as follows: 

1. Apply a Hadamard gate to |𝑥 ⟩ 

|𝜓 ⟩ = |𝑥 ⟩ ⊗ |𝑥 ⟩ ⊗ |𝑥 ⟩ ⊗
1

√2
|0⟩ + 𝑒( ix )|1⟩  

2. Apply a 𝑈ROT gate to |𝑥 ⟩ depending on |𝑥 ⟩ 

|𝜓 ⟩ = |𝑥 ⟩ ⊗ |𝑥 ⟩ ⊗ |𝑥 ⟩ ⊗
1

√2
|0⟩ + 𝑒

ix
ix

|1⟩  

3. Apply a 𝑈ROT gate to |𝑥 ⟩ depending on |𝑥 ⟩ 

|𝜓 ⟩ = |𝑥 ⟩ ⊗ |𝑥 ⟩ ⊗ |𝑥 ⟩ ⊗
1

√2
|0⟩ + 𝑒

ix ix
ix

|1⟩  

4. Apply a 𝑈ROT gate to |𝑥 ⟩ depending on |𝑥 ⟩ 

|𝜓 ⟩ = |𝑥 ⟩ ⊗ |𝑥 ⟩ ⊗ |𝑥 ⟩ ⊗
1

√2
|0⟩ + 𝑒

ix ix ix
ix

|1⟩  

5. Apply a Hadamard gate to |𝑥 ⟩ 

|𝜓 ⟩ = |𝑥 ⟩ ⊗ |𝑥 ⟩ ⊗
1

√2
|0⟩ + 𝑒( ix )|1⟩ ⊗

1

√2
|0⟩ + 𝑒

ix ix ix
ix

|1⟩  

6. Apply a 𝑈ROT gate to |𝑥 ⟩depending on |𝑥 ⟩ 

|𝜓 ⟩ = |𝑥 ⟩ ⊗ |𝑥 ⟩ ⊗
1

√2
|0⟩ + 𝑒

ix ix
ix

|1⟩

⊗
1

√2
|0⟩ + 𝑒

ix ix ix
ix

|1⟩  

7. Apply a Hadamard gate to |𝑥 ⟩ 

|𝜓 ⟩ =
1

√2
|0⟩ + 𝑒( ix )|1⟩ ⊗

1

√2
|0⟩ + 𝑒

ix
ix

|1⟩

⊗
1

√2
|0⟩ + 𝑒

ix ix
ix

|1⟩ ⊗
1

√2
|0⟩ + 𝑒

ix ix ix
ix

|1⟩  

8. The reverse order of the output state relative to the desired QFT can be observed. Therefore, 
the order of the qubits must be reversed (in this case swap y1 and y4). 

A useful form of the QFT for 𝑁 = 2 is shown above. It can be observed that only the last qubit 
depends on the values of all the other input qubits and each further bit depends less and less on the 
input qubits. This becomes important in physical implementations of the QFT, where nearest-
neighbor couplings are easier to achieve than distant couplings between qubits. Additionally, as 
the QFT circuit becomes large, an increasing amount of time is spent doing increasingly slight 
rotations. It turns out that we can ignore rotations below a certain threshold and still get decent 
results, this is known as the approximate QFT. This is also important in physical implementations, 
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as reducing the number of operations can greatly reduce decoherence and potential gate errors. 
The proposed QFT sampler algorithm for object detection in sensor data is specified below. 

Algorithm: QFT Sampler Algorithm 

1. Build a circuit that implements the QFT with the qubits upside down, then swap them 
afterwards 

2. if n is 0:  
a. return circuit #Exit function if circuit is empty 

3. n -= 1 # Start indexes from 0 
4. circuit_ApplyH(n) # Apply the H-gate to the most significant qubit 
5. for qubit in range(n): 

a. circuit_ControlledRotation(pi/2**(n-qubit), qubit, n) # For each less significant 
qubit, apply smaller-angled controlled rotation 

6. Perform qft on the first n qubits in circuit without swaps 
a. if n is 0: 

i. return circuit 
b. n -= 1 
c. circuit_ApplyH(n) 
d. for qubit in range(n): 

i. circuit_ControlledRotation(pi/2**(n-qubit), qubit, n) 
e. qft_rotations(circuit, n) 

7. QFT on the first n qubits in circuit 
a. qft_rotations(circuit, n) 
b. swap_registers(circuit, n) 
c. return circuit 

8. Create a QFT circuit of the correct size 
a. qft_circuit = qft(QuantumCircuit(n), n) 

9. Take the inverse of this circuit 
a. invqft_circuit = qft_circuit_inverse() 

10. Add it the first n qubits in existing circuit 
a. Circuit_append(invqft_circuit, circuit_qubits[:n]) 
b. return circuit_decompose()to see the individual gates 

4 An Overview of Proposed Quantum Discrete Transform    

The controlled phase rotation gate 𝐶 to perform the Quantum Discrete Transform, which 
performs a phase rotation if both qubits are in the |11⟩|11⟩ state. The matrix looks the same 
regardless of whether the most significant bit (MSB) or least significant bit (LSB) is the control 
qubit as discussed in previous section, 
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𝐶 (𝜆) =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 𝑒

 

The algorithm for the proposed quantum discrete transform is specified below: 
 
Algorithm: Proposed Quantum Discrete Transform 
Usages:  Qiskit, QuantumCircuit, ClassicalRegister, QuantumRegister, Aer, IBMQ, 
available_backends, execute, register, get_backend, circuit_drawer, state_fidelity, least_busy, 
matplotlib, pyplot, numpy, math, plot_histogram, plot_state 

1. Use state tomography functions 
2. Design Quantum Circuit for Quantum Discrete Transform  

a. Number of qubits: N # e.g. N=10 
b. Quantum Register with N qubits: Q # e.g. QuantumRegister(N, ‘Q’) 
c.  Classical Register with N Classical Bits for Measurement: C # e.g. 

ClassicalRegister(N, “C”) 
d. Build a Quantum Circuit: QCkt #QuantumCircuit(Q, C) 

3. Use Different Gates before the Controlled Phase Gate 
a. QCkt.X(Q[0]) 
b. QCkt.Y(Q[1]) 
c. QCkt.Z(Q[2]) 
d. QCkt.S(Q[3]) 
e. QCkt.SDG(Q[4]) 
f. QCkt.T(Q[5]) 
g. QCkt.barrier(]) 

4. To every qubit add Hadamard Gate 
a. for i in range(N): 

i. QCkt.H(Q[i]) 
ii. Use Controlled-Phase Gate cu1 and Entangle i-th qubit with [i+1, n]-th 

qubit 
iii. For k in range (i+1, N): 

1. QCkt.cu1((2*pi)/(2**(2+k-i-1)),Q[i], Q[j]) 
5. Gate Swap 

a. for i in range(N): 
i. if i <= (N/2) - 1: 

1. QCkt.swap(Q[i], Q[N-1-i]) 
ii. QCkt.barrier() 

6. Measure 
a. QCkt.measure(Q, C) 
b. circuit_drawer(QCkt) 
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7. Evaluate the QCkt for Different Simulation Parameters 

The designed quantum circuit for evaluating proposed quantum discrete transform is shown in 
figure 4. 

 

 
Figure 4: Proposed Designed Quantum Circuit for Quantum Discrete Transform. 
5 Results and Evaluation of the Proposed Approach   

The proposed approach is simulated on the Darwin OS with 10 CPUs and 32 GB Memory having 
Python 3.9, and Python Clang compiler. The open source Qiskit library shown in figure 5, 
https://qiskit.org/ is utilized for the implementation for the proposed approach. The modules 
available in this library qiskit-terra, qiskit-aer, qiskit-ignis, qiskit-ibmq-provider, and qiskit-aqua 
are utilized for experimental evaluation. Qiskit is an open-source toolkit for useful quantum 
computing. It has a production-ready circuit compiler. 
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Figure 5: Qiskit used for the implementation of the proposed approach. 
In Qiskit, the implementation of the 𝐶ROT gate is a controlled phase rotation gate is defined as: 

CP(𝜃) =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 𝑒

 

The mapping from the 𝐶ROT  gate into theCP(𝜃)  gate is found from the following equation: 

𝜃 =
2𝜋

2
=

𝜋

2
 

Initially the 3-qubit quantum circuit is generated. Qiskit's least significant bit has the lowest index 
(0), thus the circuit will be mirrored through the horizontal. First, H-gate is applied to qubit 2, the 
result is shown in figure 6. To turn an extra quarter turn if qubit 1 is in the state |1⟩, shown in 
figure 7. Another eighth turn if the least significant qubit (0) is |1⟩ shown in figure 8. 

   
Figure 6: H-gate applied to qubit 2. 

 
Figure 7: Qubit 1 is in the state|1⟩. 
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Figure 8: Least significant qubit (0) is|1⟩. 
With that qubit taken care of, it can be ignored and the process is repeated, using the same logic 
for qubits 0 and 1, shown in figure 9. The qubits 0 and 2 are swapped to complete the QFT shown 
in figure 10. 

 
 Figure 9: Quantum circuit after repeating the process, logic for qubits 0 and 1. 

 
Figure 10: Qubits 0 and 2 swapped. 
A general circuit is created for the QFT in Qiskit. Qiskit allows creating large general circuits like 
this. It is easier to build a circuit that implements the QFT with the qubits upside down, then swap 
them afterwards; the function is created that rotates qubits correctly. The most significant qubit 
(the qubit with the highest index) are correctly rotated as shown in figure 11. The widget can be 
used to see how this circuit scales with the number of qubits in circuit.  

 
Figure 11: Most significant qubit rotated. 
This is the first part of our QFT. The most significant qubit is correctly rotated, correctly rotate the 
second most significant qubit. Then deal with the third most significant, and so on. At the end of 
qft_rotations() function, the same code is used to repeat the process on the next n-1 qubits as shown 
in figure 12.  

 
Figure 12: All most significant qubit rotated. 
The swaps are added at the end of the QFT function to match the definition of the QFT. The 
generalized circuit shown in figure 13 for the quantum Fourier transform is generated. For 
verifying the circuit working properly or not, a number 5 (101 in binary) is encoded in the 
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computational basis. The encoded bits are shown in figure 14. The qubit’s states are verified using 
the aer simulator shown in figure 15. 

 
Figure 13: Generalized circuit for QFT. 

 
Figure 14: Generalized circuit for encoded bits. 

 
Figure 15: Qubit’s states on the aer simulator. 
The proposed sampled QFT is applied, as shown in figure 16 and the final state of qubits is 
analyzed, shown in figure 17. 

 
Figure 16: QFT circuit for encoding 5. 

 
Figure 17: Final state of qubits. 
It can be observed that the proposed sampler QFT algorithm has worked correctly. Compared the 

state |0
~
⟩ = |+++⟩, Qubit 0 has been rotated by  of a full turn, qubit 1 by 

10
 full turns (equivalent 

to of a full turn), and qubit 2 by 
20

full turns (equivalent to of a full turn).  

When the circuit is evaluated on a real device, the results would be completely random, since all 
qubits are in equal superposition of |0⟩and |1⟩. To demonstrate and investigate the QFT working 
on real hardware, instead of creating the state as specified above, the QFT is executed in reverse, 
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and the output is verified, it is the state |5
~
⟩ as expected. Firstly, Qiskit is used to easily reverse 

QFT operation. Qbits are kept in state |5
~
⟩as shown in figure 18. The circuit after application of the 

inverse QFT is shown in figure 19. The probabilities for the encoding of the digits from 0 to 7 
from computational space to quantum space is shown in figure 20. The highest probability outcome 
is for the digit 5. 

 

Figure 18: Qbits in state|5
~
⟩. 

 
Figure 19: Quantum circuit after inverse QFT. 

 
Figure 20: Probabilities of encoding the digits.  
The implementation of the proposed QDT algorithm is carried out in Anaconda Python 3.8 
distribution with Intel i3 11th generation processor, 8 GB RAM and Windows 11 OS. The python 
libraries and functions used to implement the proposed algorithm are: qiskit, IBMQ: IBM 
Quantum System One, Aer, Quantum Circuits, ClassicalRegister, QuantumRegister, 
available_backends, execute, get_backend, circuit_drawer, state_fidelity, least_busy, 
plot_histogram, plot_state, numpy, matplotlib, and math. The simulation results are shown in the 
screenshot shown in figure 21. 
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Figure 21: Simulation results. 

The relationship between superposition and counts is shown in screenshot of figure 22.  

 
Figure 22: The distribution of superposition and counts. 
The real machine used for quantum computation is shown in following screenshot shown in figure 
23. 

 
Figure 23: Used Real Machines as Backend. 
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Figure 24: 10 qubits and same initial state. 
Maximum number of shots considered to run the experiment are 8192. The maximum number of 
credits spent on executions are 3. After evaluation the ibmq_16_melbourne backend is identified 
as the best backend. For 10 qubits and same initial state the results are shown in figure 24. For 6 
qubits and same initial state the results are shown in figure 25. For 6 qubits and differential initial 
state 1.0 results are shown in figure 26. For 6 qubits and differential initial state 2.0 results are 
shown in figure 27. 

 
Figure 25: 6 qubits and same initial state. 
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Figure 26: 6 qubits and differential initial state 1.0. 

 
Figure 27: 6 qubits and differential initial state 2.0. 

The quantum computation is less uniform if more qubits are taken. It also produces more errors. 
The simulations carried out are uniformly distributed. In the real quantum machine hardware 
uniform distribution is major concern. A uniform distribution out of the designed quantum circuit 
is obtained as proper qubits has been initialized and linear combination of Hadamard and control 
phase shift is applied which rotates states along a plane on the sphere that has always the values 
of 0 or 1. If the qubits are initialized with different values, the uniform distribution will get 
minimized. The proposed QDT is utilized in next chapter with sensor data fusion integration for 
object detection for sensor data classification 
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6 Conclusion      

The quantum Fourier transform with its mathematical modelling and example is described in this 
paper. The QFT is utilized to propose quantum Fourier transform sampler algorithm. The 
mathematical elaboration with example is elaborated in this paper. The proposed quantum Fourier 
transform sampler algorithm is evaluated using the open source Qiskit platform. The evaluation of 
the algorithm is also extended to the real quantum hardware IBM Quantum by utilizing the IBM 
quantum API. For the evaluation of the proposed approach on the real quantum hardware the 
inverse QFT is utilized. The proposed approach is evaluated for the encoding of the digits 0 to 7. 
The highest probability outcome is for the digit 5. The proposed quantum Fourier transform 
sampler algorithm can be extended for object detection and for proposing the quantum discrete 
transform for object detection for sensor data classification. An overview of proposed quantum 
discrete transform with proposed quantum discrete transform algorithm, and proposed designed 
quantum circuit for quantum discrete transform is presented in this paper. The implementation 
details and results evaluation are presented in this paper. Regarding the quantum component, this 
work is aim at increasing the proportion of quantum processing in the hybrid approach. Indeed, 
more complex quantum mechanisms are expected to enhance the object detection capabilities. In 
particular, quantum computing could be examined to incorporate spatial information and 
invariance in the processing. More fundamentally, the understanding of the quantum discrete 
transforms will represent the key to design better models, develop deep quantum learning, and 
eventually implement it to many real-life applications. The proposed QDT can be utilized in future 
with sensor data fusion integration for object detection for sensor data classification. 
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